Simplify the expression. Assume that all variables are positive when they appear.

1)
$$19\sqrt[3]{2} - 5\sqrt[3]{250}$$

$$2) \frac{3 - \sqrt{2}}{3 + \sqrt{2}}$$

$$3) \frac{1 - \sqrt{10}}{1 + \sqrt{10}}$$

$$4) \frac{6\sqrt{3} + \sqrt{6}}{\sqrt{6} + \sqrt{3}}$$

$$5) \frac{6\sqrt{4} + \sqrt{8}}{\sqrt{8} + \sqrt{4}}$$

6)
$$\frac{7}{\sqrt[3]{3}}$$

7) $\frac{5}{\sqrt[3]{3}}$

7) _____

8) $\frac{-11}{\sqrt[3]{4}}$

8) _____

9) $\frac{-13}{\sqrt[3]{9}}$

9) _____

10) $14\sqrt[3]{2} - 5\sqrt[3]{250}$

10) _____

11) $\sqrt[3]{8y} - \sqrt[3]{54y}$

l1) _____

12) $\sqrt[3]{27y} - \sqrt[3]{128y}$

12) _____

13) $(8\sqrt{7} - 6)^2$

13) _____

14) $(5\sqrt{5} + 8)^2$

14) _____

15) $2\sqrt[3]{125x} + 2\sqrt[3]{8x}$

15) _____

16) $5\sqrt[3]{125x} + 5\sqrt[3]{64x}$

16) _____

17) $4\sqrt[3]{16x} - 2\sqrt[3]{128x}$

17) _____

18) $3\sqrt[3]{16x} - 2\sqrt[3]{54x}$

18) _____

19) $\sqrt[3]{216} + 1 - \sqrt[3]{14}$

19) _____

20) $\sqrt[3]{125} + 13 - \sqrt[3]{14}$

20) _____

21) $\sqrt{3x^2}$ - $\sqrt[3]{320}$ + $\sqrt{147x^2}$

21) _____

22) $\sqrt{2x^2}$ - $\sqrt[3]{192}$ + $\sqrt{128x^2}$

22) _____

Solve	the	nroh	lem

the problem. 23) A formula used to determine the velocity v in feet per second of an object (neglecting air resistance) after it has fallen a certain height is $v = \sqrt{2gh}$, where g is the acceleration due to gravity and h is the height the object has fallen. If the acceleration g due to gravity on Earth is approximately 32 feet per second, find the velocity of a bowling ball after it has fallen 60 feet. (Round to the nearest tenth.)	23)
24) A formula used to determine the velocity v in feet per second of an object (neglecting air resistance) after it has fallen a certain height is $v = \sqrt{2gh}$, where g is the acceleration due to gravity and h is the height the object has fallen. If the acceleration g due to gravity on Earth is approximately 32 feet per second, find the velocity of a bowling ball after it has fallen 40 feet. (Round to the nearest tenth.)	24)
25) Police use the formula $s = \sqrt{30 f d}$ to estimate the speed s of a car in miles per hour, where d is the distance in feet that the car skidded and f is the coefficient of friction. If the coefficient of friction on a certain gravel road is 0.27 and a car skidded 340 feet, find the speed of the car, to the nearest mile per hour.	25)
26) Police use the formula $s = \sqrt{30 fd}$ to estimate the speed s of a car in miles per hour, where d is the distance in feet that the car skidded and f is the coefficient of friction. If the coefficient of friction on a certain gravel road is 0.28 and a car skidded 350 feet, find the speed of the car, to the nearest mile per hour.	26)
27) Julie and Eric row their boat (at a constant speed) 21 miles downstream for 3 hours, helped by the current. Rowing at the same rate, the trip back against the current takes 7 hours. Find the rate of the current.	27)
28) Julie and Eric row their boat (at a constant speed) 32 miles downstream for 4 hours, helped by the current. Rowing at the same rate, the trip back against the current takes 8 hours. Find the rate of the current.	28)

29) Julie and Eric row their boat (at a constant speed) 48 miles downstream for 6 hours, helped by the current. Rowing at the same rate, the trip back against the current takes 8 hours. Find the rate of the current.	29)
30) A barge takes 5 hours to move (at a constant rate) downstream for 45 miles, helped by a current of 2 miles per hour. If the barge's engines are set at the same pace, find the time of its return trip against the current.	30)
31) A barge takes 6 hours to move (at a constant rate) downstream for 60 miles, helped by a current of 2 miles per hour. If the barge's engines are set at the same pace, find the time of its return trip against the current.	31)
32) A barge takes 4 hours to move (at a constant rate) downstream for 40 miles, helped by a current of 3 miles per hour. If the barge's engines are set at the same pace, find the time of its return trip against the current.	32)

Answer Key

Testname: EXAM2PREPSUPPLEMENT CH 4, 5, 6V01

- 1) $-6\sqrt[3]{2}$ 2) $\frac{11 6\sqrt{2}}{7}$
- 3) $\frac{11 2\sqrt{10}}{-9}$
- 4) $5\sqrt{2} 4$ 5) $5\sqrt{2} 4$
- 6) $\frac{7\sqrt[3]{9}}{3}$
- 7) $\frac{5\sqrt[3]{9}}{3}$
- 8) $\frac{-11\sqrt[3]{2}}{2}$
- 9) $\frac{-13\sqrt[3]{3}}{3}$
- 10) $-11\sqrt[3]{2}$
- 11) $2\sqrt[3]{y} 3\sqrt[3]{2y}$
- 12) $3\sqrt[3]{y} 4\sqrt[3]{2y}$ 13) $484 96\sqrt{7}$
- 14) $189 + 80\sqrt{5}$
- 15) $14\sqrt[3]{x}$
- 16) $45\sqrt[3]{x}$
- 17) 0
- 18) 0
- 19) 7 $\sqrt[3]{14}$
- 20) 18 $\sqrt[3]{14}$
- 21) $8x\sqrt{3} 4\sqrt[3]{5}$
- 22) $9x\sqrt{2} 4\sqrt[3]{3}$
- 23) 62.0 ft per sec
- 24) 50.6 ft per sec
- 25) 52 mph
- 26) 54 mph
- 27) 2 mph
- 28) 2 mph
- 29) 1 mph
- 30) 9 hours
- 31) 10 hours
- 32) 10 hours